Forward propagating reinforcement learning--biologically plausible learning method for multi-layer networks.
نویسندگان
چکیده
We introduce a biologically plausible method of implementing reinforcement learning to multi-layer neural networks. The key idea is to spatially localize the synaptic modulation induced by reinforcement signals, proceeding downstream from the initial layer to the final layer. Since reinforcement signals are known to be broadcast signals in the actual brain, we need two key assumptions, inhibitory backward connections and bypass to output units, to spatially localize the effect of delayed reinforcement without breaking the basic laws of neurophysiology.
منابع مشابه
Reinforcement Learning in Associative Memory
A reinforcement learning based associative memory structure (RLAM) is proposed. In this structure, a one-layer feed forward Palm [1] model is applied to the networks. Instead of batch training, an on-line learning method is used to construct the memory. The networks are trained interactively according to reinforcement learning, which is biologically plausible. The experiment results show that t...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملDirect Feedback Alignment Provides Learning in Deep Neural Networks
Artificial neural networks are most commonly trained with the back-propagation algorithm, where the gradient for learning is provided by back-propagating the error, layer by layer, from the output layer to the hidden layers. A recently discovered method called feedback-alignment shows that the weights used for propagating the error backward don’t have to be symmetric with the weights used for p...
متن کاملBiologically Plausible Multi-dimensional Reinforcement Learning in Neural Networks
How does the brain learn to map multi-dimensional sensory inputs to multi-dimensional motor outputs when it can only observe single rewards for the coordinated outputs of the whole network of neurons that make up the brain? We introduce Multi-AGREL, a novel, biologically plausible multi-layer neural network model for multi-dimensional reinforcement learning. We demonstrate that Multi-AGREL can ...
متن کاملBidirectional Backpropagation: Towards Biologically Plausible Error Signal Transmission in Neural Networks
The back-propagation (BP) algorithm has been considered the de-facto method for training deep neural networks. It back-propagates errors from the output layer to the hidden layers in an exact manner using the transpose of the feedforward weights. However, it has been argued that this is not biologically plausible because back-propagating error signals with the exact incoming weights is not cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio Systems
دوره 71 1-2 شماره
صفحات -
تاریخ انتشار 2003